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We demonstrate that a cancellation of absorption occurs on resonance for two(or any even number of)
coupled optical resonators, due to mode splitting and classical destructive interference, particularly when the
resonator finesse is large and the loss in the resonator farthest from the excitation waveguide is small. The
linewidth and group velocity of a collection of such coupled-resonator structures may be decreased by using
larger resonators of equal size, by using larger resonators of unequal size where the optical path length of the
larger resonator is an integer multiple of that of the smaller one, or by using a larger number of resonators per
structure. We explore the analogy between these effects and electromagnetically-induced transparency in an
atomic system.
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Electromagnetically-induced transparency(EIT) is a phe-
nomenon that can occur in atomic systems as a result of the
destructive interference between excitation pathways to the
upper level. This interference occurs in single atoms but
manifests itself at the macroscopic level. Naturally, one is led
to ask whether EIT-like effects can occur through classical
means. Recently, classical interference of fields(rather than
probability amplitudes) due to collective electronic effects
has been proposed for propagation at frequencies below the
cutoff frequency of an ideal plasma[1], as well as at the
electron-cyclotron resonance of a cold plasma[2]. Classical
analogs of EIT can also be demonstrated in systems of me-
chanical or electrical oscillators, where the destructive inter-
ference between in-phase and out-of-phase normal modes re-
sults in no power transfer to the system even when a probe
excitation is present[3–5].

Similarly, in this paper we demonstrate that EIT-like ef-
fects can be established in coupled optical resonators due to
classical destructive interference. Yarivet al. have shown
that extensive mode splitting occurs in coupled-resonator op-
tical waveguides(CROW’s), leading to the formation of pho-
tonic bands[6]. In addition, we have found that whispering
gallery modes(WGM’s) in coupled microresonators are split
symmetrically when the individual resonators have the same
optical path length(OPL), due to the fact that light must
traverse a coupler twice, acquiring a netp phase shift before
interfering with light in the initial resonator[7]. Notably, in
contrast to EIT where the Autler-Townes splitting arises from
the ac Stark effect induced by an auxiliary external field[8],
the splitting in coupled(mechanical, electrical, or, as in the
case examined here, optical) resonators is the result of an
internal coupling between individual oscillators. For this rea-
son, coupled-resonator-induced transparency(CRIT) does
not suffer from the propagation scaling limitations of EIT as
a result of control field absorption.

To elucidate the analogy between atomic and photonic
coherence effects, let us first briefly review EIT in an atomic

three-levelL configuration as shown in Fig. 1. Theu1l-u3l
transition is assumed to be dipole disallowed. When a strong
control field is resonantly applied to theu3l-u2l transition, the
excited state u2l splits into the dressed statesu± l
=su2l7 u3ld /Î2, separated by the Rabi frequency of the con-
trol (or coupling) field Vc. The absorption of a weak probe
beam sVp!Vcd, resonant with theu1l-u2l transition, van-
ishes either(i) when the Rabi frequency of the control field is
larger than the excited-state lifetime-broadened linewidth
(Vc.G, where G=G21+G23) or (ii ) when the splitting is
smaller than the linewidthsVc,Gd but Fano-type interfer-
ence[9] occurs between the two indistinguishable quantum-
mechanical paths. The interference is destructive owing to a
p-phase difference between the two contributions to the
atomic response at the probe frequency. For the case of zero
detuning of the control field and a decay rate of zero for the
u1l-u3l transitionsG31=G13=0d, the transition rate for the ab-
sorption of an arbitrarily detuned probe beam is given by
[10]

WsDd =
fVp

2/Gg

1 +
4

G2FD −
sVc/2d2

D
G2

= fVp
2/GgK, s1d

where Vp and D are the Rabi frequency and angular fre-
quency detuning of the probe field, respectively, andG is the
decay rate from levelu2l to levelsu1l andu3l. Equation(1) is
the expression for a split Lorentzian. WhenVc→0 this ex-
pression reduces to that of a single Lorentzian with a full
width at half maximum(FWHM) of G. The corresponding
atomic absorption cross section isssDd=s0K=f"v / IgW
=a /r wheres0=fVp

2/Gg"v / I is the maximum cross section
(line center whenVc→0), KsDd is the dimensionless cross
section or line-shape function,a is the absorption coefficient,
r is the number density of(dressed) atoms, andv and I are
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the angular frequency and intensity of the probe, respectively
[11].

Next we consider the unidirectional propagation and par-
tial coupling of light from a straight waveguide intoN ring
resonators coupled together as shown in Fig. 2. Taking an
iterative approach[7], one readily finds that the absorptance
of light due to rings 1 throughj is given by

Ãjsf j,f j−1, . . . ,f1d ; 1 − T̃j =
Ãj

senvd

1 + F̃j sin2S f̃ j−1
seffd + f j

2
D ,

s2d

where

Ãj
senvdsf j−1,f j−2, . . . ,f1d ;

s1 − r j
2ds1 − aj

2ut̃ j−1u2d

f1 − r jajut̃ j−1ug2
s3d

is an envelope function,

F̃jsf j−1,f j−2, . . . ,f1d ;
4r jajut̃ j−1u

f1 − r jajut̃ j−1ug2 s4d

is a function related to finesse,r j and tj =Î1−r j
2 are the re-

flection and transmission coefficients of thej th coupler, re-
spectively,f j =b jLj andaj =e−a jLj/2 are the single-pass phase
shift and attenuation factor for thej th ring, respectively, and
a j, Lj, and b j are the absorption coefficient, length, and
propagation constant of thej th ring, respectively. The factors

t̃ jsf j,f j−1, . . . ,f1d ;
Ẽ4s j−1d+2

Ẽ4s j−1d

=
r j − ajt̃ j−1e

if j

1 − r jajt̃ j−1e
if j

s5d

and

f̃ j
seffdsf j,f j−1, . . . ,f1d ; argst̃ jd = p + f j

+ argS ajt̃ j−1 − r je
−if j

1 − r jajt̃ j−1e
if j
D s6d

represent the complex transmission coefficient and effective
phase shift for thej th ring, respectively, wheret0=1 and

f0
seffd=0. The transmittance across thej th ring is simply T̃j

= ut̃ ju2. For compactness, quantities that depend on single-
pass phase shifts are denoted by a tilde, with explicit depen-
dences only included on the left-hand side of the expres-
sions.

For a single ringA1
senvd and F1 are simply coefficients,

independent of the single-pass phase shift. Equation(2) then
becomes the typical Airy profile, having amaximumvalue of
A1

senvd at resonances f1mod 2p=0d, a minimum value of

A1
senvd / s1+F1d at antiresonancesf1 mod 2p=pd, and a width

inversely related to the coefficient of finesseF1. Thus, for
large F1, the small-angle approximation is valid over the
entire resonance—i.e., sinsf1/2d<sf1/2d—and the resonant
features are well approximated by Lorentzians each having a
FWHM of 4/ÎF1. For two rings the situation is much differ-
ent. In this case Eq.(2) becomes

Ã2sf2,f1d =
Ã2

senvd

1 + F̃2 sin2S f̃1
seffd + f2

2
D . s7d

When the OPL’s of the two rings are identical, such that
f1=f2=f (analogous to a degenerate atomicL system), this
equation displays aminimumat the single-ring resonances
sf mod 2p=0d, resulting in a splitting, as shown in Fig.
3(a), where A2 is plotted for a1=0.9999, a2=0.88, r1
=0.999, andr2=0.9.

The analogy with EIT is made clearer by assuminga1

=1 (analogous to the assumptionG31=G13=0). A2
senvd andF2

are then independent of the single-pass phase shifts(because
ut̃1u=1), and Eq.(7) becomes directly analogous to Eq.(1).
Again, in contrast with a single ring, Eq.(7) displays a mini-
mum value ofA2

senvd / s1+F2d at the single-ring resonances
sf mod 2p=0d and antiresonancessf mod 2p=pd and a
maximum value ofA2

senvd at sf1
eff+f2dmod 2p=0,—i.e., be-

tween resonance and antiresonance. Note that whent1→0
(analogous toVc→0), f̃1

seffd→0 and Eq.(7) reduces to the
typical Airy profile for a single(uncoupled) ring. However,
for t1.0 a splitting occurs becausef̃1

seffd=p at the single-
ring resonance, which leads to a minimum in the absorption.
The phase difference between the split modes increases with
t1 according toDf=2 sin−1st1d, taking its maximum value
Dfsmaxd=p (half the free spectral range) when t1→1, at
which point the spectrum simply becomes identical to that of

FIG. 1. Typical energy level diagram for the observation of
EIT.

FIG. 2. Illustration ofN coupled ring resonators. The numbering
scheme for the rings and electric fields is shown.
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a ring with twice the optical path length of the individual
rings. In this strong-coupling limit, interference between the
normal modes of the structure has no significant effect on the
resonant features. The absorption at the single-ring resonance
is minimized simply because the splitting is so large. In the
weak-coupling limit, on the other hand, the modes become
close together and, if not for interference, their independent

overlap would result in significant absorption. In this limit,
therefore, it is the interference of light circulating in one ring
with that in the adjacent ring that leads to induced transpar-
ency.

Hence, the transmission coefficient of the first coupler,t1,
is analogous to the coupling Rabi frequencyVc and deter-
mines the spacing between the split modes—i.e., the CRIT
linewidth. In addition, the phase mismatch between the inci-
dent light and the single-ring resonance frequenciesf2 mod-
els the probe field detuningD, while the coupler transmission
t2 corresponds to the probe Rabi frequencyVp. The attenu-
ation factora1 modelsG13, the rate of nonradiative popula-
tion transfer between the ground statesu1l and u3l, while a2
models the decay rateG from the upper level(primarily
spontaneous emission). The destructive interference in CRIT
results from thep /2 phase shift that occurs when light
crosses a coupler. Two passes across a coupler are required,
and hence ap-phase shift, for light in adjoining rings to
interfere. Comparison of Eqs.(1) and (7), however, reveals
an important difference between CRIT and EIT. CRIT in-
volves split Airy expressions, whereas EIT involves split
Lorentzians. This distinction is negligible when the resonator
finesse is sufficiently large, but presents a limitation on the
induced transparency as the finesse decreases because, unlike
a Lorentzian, an Airy profile is periodic and so does not
asymptotically approach zero. In both cases the transparency
is limited to that experienced at antiresonance, but this is
lower in CRIT due to the periodicity of the Airy profile. In
the limits where CRIT can be described by a split Lorentz-
ian, the analogies between EIT and CRIT quantities can be
made more definite. For two resonators with identical OPL’s,
under the assumption thata1=1, Eq.(6) can be rewritten as
sin2fsf̃1

seffd+f2d /2g=sr1−cosf2d2/ s1+r1
2−2r1 cosf2d. For

small detunings cosf2<1−sf2
2/2d, and for sufficiently

weak coupling between resonatorss1−r1d2! r1f2
2. Substitut-

ing these results into Eq.(7) and transforming to angular
frequencies yields a split Lorentzian

Ã2sdd =
A2

senvd

1 +
4

g2Fd −
sDv/2d2

d
G2

= A2
senvdk, s8d

where g=1/tD=4Îsr1/F2d /tR=2s1−r2a2d /ÎhtR is related
to the linewidth,h=r2a2/ r1, tD is reminiscent of the photon
decay time(analogous to the lifetime of stateu2l), tR is the
single-ring round-trip time,Dv=Df /tR=2Î2s1−r1d /tR is
the frequency difference between the split modes, andd
=f2/tR is the detuning. Note that Eq.(8) is formally identi-
cal to Eq.(1) and accurately describes CRIT for phase de-
tunings s1−r1d /Îr1!f2!1. Hence, in these limits, the
analogies between CRIT and EIT areD→d, G→g, Vc
→Dv, andKsDd→ksdd for the quantities in the denomina-
tors. Because the incident power in the waveguideP, linear

number density of structuresl, and absorptanceÃ2sdd play
roles in CRIT similar to those played by the probe intensity
I, volume density of atomsr, and cross sectionssDd in EIT,
respectively, we find the additional analogyVp

FIG. 3. (a) Absorptance vs single-pass phase shift for two
coupled ring resonators witha1=0.9999,a2=0.88, r1=0.999, and
r2=0.9. The resonance is split, analogous to the Autler-Townes
splitting and destructive interference that occurs in three-level
atomic systems, such that transparency rather than absorption oc-
curs forf1=f2=0. (b) Effective phase shift for a single ring reso-
nator sf1

seffdd and for two coupled ring resonatorssf2
seffdd. Whereas

anomalous dispersion occurs on resonance for(a), normal disper-
sion occurs for(b). (c) The slope of the effective phase shift vs the
single-pass phase shift for two coupled rings. This quantity is pro-
portional to the difference between the group index and the phase
index. The light is slowed by a factor of about 100rZ on resonance.
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→2t2Îs1−a2
2dsP/hg"vd /tR, for the quantities in the

numerators. Note that in the limit of small resonator
losses a2

2<1−a2L2 and h<1−st2
2+a2L2− t1

2d /2<1,
which yields Vp<2t2Îsa2L2P/g"vd /tR and g<st2

2

+a2L2d /tR<g2—i.e., g is simply related to the total(cou-
pling and internal) loss rate of the resonator coupled to the
excitation waveguide,g2. In this limit Dv<2t1/tR is also
obtained, which reminds us of the main physical point, that
the coupling between resonatorst1 is responsible for the
mode splitting, in analogy with the Rabi frequency of the
control fieldVc.

Unlike the EIT variablesG and Vc, the corresponding
CRIT variablesg andDv are only independent in the limit
of small resonator losses. The independent variablesr1 and
r2a2 determine the character of the transparency through the
relative splitting

Dv

g
=

Î2hs1 − r1d
1 − r2a2

, s9d

plotted in Fig. 4. This parameter specifies the extent to which
the resonators can be considered to be independent(distin-
guishable). In particular, whenDv /gù1 the response can be
approximated as the sum of two distinct Lorentzians[10] at
d= ±Dv /2—i.e., ksdd<k++k− where k+sdd=1/h1+f4sd
−Dv /2d /gg2j andk−sdd=1/h1+f4sd+Dv /2d /gg2j. The two
Lorentziansk+sdd and k−sdd are just resolved whenDv /g
=1—i.e., when r1=2r2a2/ f1+sr2a2d2g. Hence, the regime
Dv /gù1 is analogous to EIT for distinguishable upper
statesu± l—i.e., for Vc.G, where transparency results pri-
marily from the ac Stark effect. In contrast, forDv /g,1 the
interference due to coupling between the normal modes of
the structure cannot be neglected, and the associated strong
dispersion results in light that is considerably slowed. Utiliz-
ing the relationshipsg<g2 and Dv<2Îg1/tR, valid for
small resonator losses, and recognizing that 1/tR@g1 for
high-Q resonators, Eq.(9) becomes

Dv

g
<

2t1
t2
2 + a2L2

<
2Îg1/tR

g2
@

g1

g2
, s10d

where g1 and g2 are the total loss rates for the first and
second resonators, respectively. Hence, in this limit, the con-

dition for interference becomesg1!g2, which emphasizes
the fact that interference between normal modes requires dif-
ferential loss in the resonators; i.e., interference does not
occur (even though mode splitting occurs) when the loss
rates in the two resonators are equalsg1=g2d. Note also that
in this limit of small resonator losses, the relative splitting
(or distinguishability parameter) varies dramatically for
small changes inh, as shown in Fig. 4.

For completeness we note that, in addition to CRIT,
coupled-resonator-induced absorption(analogous to electro-
magnetically induced absorption[12]) can also occur for
two-resonator systems, but requires that the resonator far-
thest from the excitation waveguide be undercoupled—i.e.,
a1, r1. Additionally, an analogy exists between the mode
splitting that occurs in CRIT or EIT and the vacuum Rabi
splitting that occurs as a result of the underdamped strong
coupling between atoms and field modes in an optical cavity
[13,14]. Indeed Zhuet al. have demonstrated that a simple
consideration of the classical linear dispersion of the atoms
in the cavity yields a mode splitting equivalent to that pre-
dicted by the fully quantum formalism[15]. Vacuum Rabi
splitting involves the coupling of the Airy cavity modes with
the Lorentzian atomic response and, in this sense, bridges the
effects of EIT and CRIT, demonstrating the universality of
the mode splitting phenomenon.

The examination of slow light in coupled microresonators
[16,17] is simplified by assuming pulse lengths longer than
the transient response of the structure, so that each structure
is effectively in steady state. This is equivalent to assuming
that the input is quasimonochromatic—i.e., that the pulse
spectrum is sufficiently narrow in comparison to the CRIT
linewidth. The assumption of unidirectional propagation also
greatly simplifies the analysis because it enables the coupling
between different structures to be ignored. It is also useful to
note that the effective phase shiftf̃seffd imparted to light
transmitted across a single structure is analogous to the po-
larizability of a single atom, a two-level atom for the case
where the structure consists of a single ring, or a three-level
atom in the case where the structure consists of two coupled
rings. Therefore, a collection of such structures is analogous
to an optical medium, and the contribution to the group index
from a single structure within this collection is proportional
to df̃seffd /df. The transformation from “microscopic” to
“macroscopic” quantities necessarily involves the density of
structures. Hence, ignoring the material dispersion of the
waveguide, the relative group index may be writtend ñ= ñg

−n=lZdf̃seffd /df, where ñg is the group index,n is the
phase index of the waveguide material,l=1/D is the linear
number density of structures,Z=nL=npd is the OPL of a
single ring,d is the diameter of a single ring, andD is the
distance(along the excitation waveguide) between adjacent
structures. Hence, the relative group index may be no larger
thansdñdmax=npdf̃seffd /df for the case where the structures
are linearly “close packed”—i.e., whenD=d. In simple two-
level atomic systems, slow(fast) light occurs at the wings
(peak) of atomic resonances because the refractive index in-
creases(decreases) rapidly with frequency across the reso-
nance; i.e., normal(anomalous) dispersion occurs. As we
have pointed out, in many ways WGM’s in microresonators

FIG. 4. Relative splittingDv /g plotted vsr1 for various values
of r2a2 (solid curve) andh (dashed curve). The dotted curve repre-
sents the approximation of small resonator losses forr2a2=0.9.

SMITH et al. PHYSICAL REVIEW A 69, 063804(2004)

063804-4



are analogous to atomic resonances. However, unlike absorp-
tion in atomic modes, the loss in microresonators is typically
dominated by surface scattering whereas intrinsic absorption
is negligible. Radiative(bending) losses can also be signifi-
cant for sufficiently small resonators. A microresonator may
be said to be undercoupled, overcoupled, or critically
coupled depending on the coupling-to-loss ratio. On-
resonance, single overcoupled resonatorssa1. r1d result in
slow light, whereas single undercoupled resonatorssa1, r1d
result in fast light, and critically coupled resonatorssa1=r1d
result in zero transmission. Undercoupled resonators thus
have the same linear dispersion characteristics as atomic
resonators—i.e., normal dispersion in the wings and anoma-
lous dispersion at the peak of the resonance. The problem in
both single microresonators and two-level atoms is that slow
light is accompanied by significant loss, and this is overcome
in both cases with the addition of a second resonator coher-
ently coupled to the first, by an external electromagnetic field
in the case of EIT or by an intrinsic coupling in the case of
CRIT. The effective phase shiftf̃2

seffd and single-structure
contribution to the group indexdf̃2

seffd /df, are plotted in
Figs. 3(b) and 3(c), respectively, for the structure shown in
the inset of Fig. 3(a). Strong normal dispersion is observed to
accompany the induced transparency for two(or even num-
bers of) coupled rings, in contrast to the anomalous disper-
sion (and strong absorption) that occurs for single(or odd
numbers of coupled) rings.

As has been pointed out for atoms, larger group delays are
associated with smaller EIT linewidths. The same is true for
CRIT, and one way to obtain larger dispersion and group
delays is simply to use larger resonators. The size of each
resonator may be increased by the same amount, or the size
of just one of the resonators may be increased such that the
OPL of the larger ring is an integer multiple of that of the
smaller ring. If, for example, the first resonator is made 4
times larger than the second, such thatf1=4f2, then every
fourth resonance of the first ring will be split, and that split-
ting will be such that the linewidth of the resulting “spectral
hole,” and hence the group velocity at line center, is 4 times
smaller than for the case of equal-sized ringssf1=f2d. These
effects are observed in Figs. 5(a) and 5(b), where the absorp-
tance A2 and single-structure group indexdf̃2

seffd /df2 are
plotted, respectively, for the case ofa1=0.9999,a2=0.88,
r1=0.999,r2=0.9, andf1=4f2. This effect is analogous to
the case of nondegenerate EIT where the probe frequency is
a harmonic of that of the control field.

Moreover, in addition to atomic three-levelL configura-
tions, EIT is possible in cascadeJ systems. It has been
demonstrated that forn-level cascaded atomic systems, the
atomic resonance splits inton−1 submodes, as a result of the
interference between one- and multiple-photon effects, such
that n−2 dark states occur in the gaps between the reso-
nances[18]. Hence, EIT occurs on line center whenn is odd
but is destroyed whenn is even. Similarly, forN identical
coupled microresonators, the resonance frequency splits into
N submodes, as a result of interference between one- and
multiple-ring paths. WhenN is even, a spectral hole appears
at the single-ring resonance as a result of CRIT, whereas a
peak occurs whenN is odd. Thus, because each submode is

narrower than the single-ring resonance, the group velocity
can be made even smaller when larger numbers of resonators
are employed.

In summary, we have demonstrated that EIT-like effects
can be established in coupled optical resonators due to clas-
sical destructive interference. Internal coupling between the
resonators is responsible for the splitting, rather than the ap-
plication of an external control field. Whereas EIT is often
limited by absorption of the control field, for CRIT there is
no collapse of the splitting with propagation since there is no
control field to be absorbed. The CRIT linewidth may be
decreased by using larger rings of equal size(analogous to
degenerate three-level EIT), by using larger resonators of
unequal size where the optical path length of the larger reso-
nator is an integer multiple of that of the smaller one(analo-
gous to nondegenerate three-level EIT), or by using larger
numbers of equal-sized resonators(analogous to multilevel
EIT). These coupled microresonators can play a role in the
implementation of photonic quantum logic gates[19] and
offer an alternative approach to quantum well devices[20]
for achieving induced transparency in the solid state. A prac-
tical difficulty is that CRIT is obscured when the intrinsic
loss in the pumping resonator becomes significant, in direct
analogy to the condition thatG13!G for the observation of
EIT. Even in the absence of CRIT, because the resonance

FIG. 5. (a) Absorptance vs single-pass phase shift for two un-
equal coupled ring resonators such thatf1=4f2, where a1

=0.9999,a2=0.88,r1=0.999, andr2=0.9. The CRIT linewidth is 4
times smaller than for the case of equal-sized ringssf1=f2d. (b)
The group index on resonance is 4 times larger than for the case of
equal-sized ringssf1=f2d.
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features are significantly narrower in coupled resonators, the
dispersion is much greater, and hence the light is slower(or
faster) than in single resonators. However, CRIT has recently
been observed in fused silica microspheres[21], which can
possess intrinsic quality factors exceeding 108, correspond-
ing to attenuation factorsa.0.9999. Moreover, in contrast
with microfabricated structures, the coupling reflectivity of
silica microspheres can be easily adjusted and can approach
unity simply by increasing the separation of the spheres.

The work of K. A. Fuller was supported by the NASA
Faculty Fellowship Program and by NSF Grant No. ATM-
0220465. A.T.R. acknowledges support from a NASA EPS-
CoR Research Initiation Grant and NSF Grant No. ECS-
0115442. R.W.B. acknowledges support from ONR Grant
No. N00014-02-1-0797. The authors also acknowledge the
Education Programs Office, Technology Investment Pro-
gram, and Center Director’s Discretionary Fund at NASA’s
Marshall Space Flight Center.

[1] S. E. Harris, Phys. Rev. Lett.77, 5357(1996).
[2] A. G. Litvak and M. D. Tokman, Phys. Rev. Lett.88, 95003

(2002).
[3] W. E. Lamb and R. C. Retherford, Phys. Rev.81, 222 (1951).
[4] P. R. Hemmer and M. G. Prentiss, J. Opt. Soc. Am. B5, 1613

(1988).
[5] G. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig,

Am. J. Phys.70, 37 (2001).
[6] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett.24, 711

(1999).
[7] D. D. Smith, H. Chang, and K. A. Fuller, J. Opt. Soc. Am. B

20, 1967(2003).
[8] S. H. Autler and C. H. Townes, Phys. Rev.100, 703 (1955).
[9] U. Fano, Phys. Rev.124, 1866 (1961); U. Fano and J. W.

Cooper,ibid. 137, A1364 (1965).
[10] Y. Li and M. Xiao, Phys. Rev. A51, 4959(1995).
[11] G. S. Agarwal, Phys. Rev. A55, 2467(1997).
[12] A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. A57,

2996 (1998).
[13] J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly,

Phys. Rev. Lett.51, 550 (1983).
[14] M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and

H. J. Carmichael, Phys. Rev. Lett.63, 240 (1989).
[15] Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael,

and T. W. Mossberg, Phys. Rev. Lett.64, 2499(1990).
[16] J. E. Heebner and R. W. Boyd, J. Mod. Opt.49, 2629(2002).
[17] R. W. Boyd and D. J. Gauthier, inProgress in Optics XXXXIII,

edited by E. Wolf(Elsevier, Amsterdam, 2002).
[18] D. McGloin, D. J. Fulton, and M. H. Dunn, Opt. Commun.

190, 221 (2001).
[19] T. Opatrny and D. G. Welsch, Phys. Rev. A64, 023805

(2001).
[20] G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov,

and C. C. Phillips, Phys. Rev. Lett.84, 1019(2000).
[21] A. Naweed and A. T. Rosenberger(private communication).

SMITH et al. PHYSICAL REVIEW A 69, 063804(2004)

063804-6


